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0< 7H PROBABIL;T GENERATJIG FUNCTIONAL FOR POINT PROCESSES

r.o. Dalev* D. Vere-Jones

Statistics Dept. (IAS) Institute uf Statistics and
Australian National University Operations Research

Victoria University of Wellington

Summary

An extended probability generating functional (p.g.fl.)

G[h] = E(exp log h(x) N(dx)) is well-defined for any point

process N on the complete separable metric space X over

the space V 0 of measurable functions h : X - (0,1] such

that inf h(x) - 0 . The distribution of N isxE

determined uniquely by the p.g.fl. G[h] = G[h] over the

smaller space t'0 of functions h E r0 for which 1-h has

bounded support. Continuity results for G[.] involving

pointwise convergent sequences {hn I C V0  or 10 or

P {measurable h : X - [0,1]} or V ={h E V : 1-h has

bounded support} are reviewed, and used in furnishing a

complete p.q.fl. proof of the mixing property of certain

stationary cluster processes.

Keywords: Continuity of generating function,

mixing of point process, extended probability

generatinc functional.
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1. Introduction

Various authors, in particular Moyal (1962) and Westcott

(1972), have developed the discussion of point processes via

probalility generating functionals (p.g.fl.s). The object

of this paper is to collect together some notes concerning

the spaces of functions on which p.g.fl.s may be defined,

introduce the extended p.g.fl., and use this extended p.g.fl. to

establish mixing properties of stationary cluster processes

via p.g.fl. techniques.

We work with point processes defined on some complete
A

separable metric space X . NX  denotes the space of counting

measures defined on the Borel subsets BX  of X such that

these measures are finite on bounded sets in BX  This

set-up corresponds with that of Mathes, Kerstan and Mecke (1978);

Kallenbera (1975) assumes that X is locally compact as well.

In measure-theoretic language, a point process N is a

measurable mapping of a probability space (P,F,P) into

(k"×,(N )) where (Nx) is the smallest a-algebra with

respect to which the mappings N -N(A) are measurable for

each A C BX

The appropriate transform tool for the discussion of a

random measure 7 defined on X , as distinct from a random

signed measure, is the Laplace functional L[f] defined on

the space BM +() of bounded measurable non-negative functions F

f of bounded support (i.e., vanishes outside some bounded

set in 8 ) by

(1.1) L[f] = E exp(- f(xlV(dx))I ×X
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Kallenberg (1975, p.6) calls this functional the L-transform,

denoting it by L . He shows (his Theorem 3.1) that the

distribution of a random measure on a locally compact space

is determined by the values of L[f] for f in the smaller

space F C BM (X) of non-negative continuous functions on

with compact support. As a corollary, we deduce that a point

process, being a special case of a random measure, has its

distribution determined by the values of L[f] for

f G BM (X). (Strictly speaking, this is not a corollary unless

X is locally compact; rather we have a corollary to the extension

of Kallenberg's theorem to the case of X a complete separable

metric space.)

However, the most convenient transform tool for the

discussion of a point process N is not the Laplace functional,

but, by analogy with the probability generating function (p.g.f.)

for non-negative inteqer-valued random variables (r.v.s),

the probability generating functional (p.g.fl.) G[.]

Here it is not quite so clear as to which space is the most

appropriate one to use in the definition, and the main theme

of this note is that the choice of a slightly smaller space

than has been customary simplifies and clarifies the proofs of

some useful theorems on mixing properties and related topics.

We define the p.g.fl. first on the space i of measurable

complex-valued functions g on X of modulus 1 and for

which l-g has bounded support : set

(1.2) Gig] = E exp log gx) N(dx)
"X

with the convention that exp log g(x)N(dx) 0 ifS[ ,

..............................................



3.

N(x,) 0 0 for any x for which g(x) = 0 . In this

(fi-st) definition of G[.1 , the use of exponentiation,

coupled with exp(27i) = 1 and the fact that N(-) is atomic

with integer-valued atoms, overcomes any possible ambiguity

that could come from the use of different branches of log g(.)

for complex, non-zero, g(.) , while the possible indeterminacy

that could come from log g(x) when g(x) = 0 is obviated

bY the caveat. Since the very reason for the use of an integral

in (1.2) is to by-pass the question of defining what may

possibly be an infinite product, the caveat resolves the possible

indeterminacy in a manner consistent with the purpose of the

definition.

The space i is certainly richer than needed. Ideally,

the choice of a function space used in defining transforms is

dictated by reasons of convenience and economy, the former

reqcuiring the space to be large enough to admit closure under

(c.q.) limit operations, the latter requiring the space to be

small enough (consistent with uniqueness of determination

of the distribution of the random entity involved) so as to

allow the maximum flexibility in manipulation. Westcott (1972)

principally used for G[.] not U but the space V _ V(X)

of 10,1]-valued measurable functions h for which 1-h

has bounded support. (In fact, Westcott used V to denote

the space of [0,11-valued measurable functions with bounded

support, so any measurable g : X - [0,11 has g E V iff

l-q '- V . Thus, the distinction between V and V is

E-ssntially a notational convention, but we believe the use of

V to be preferable because it enables theorems to be stated

mrnre economically.)
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The use of the space

( (1.3) L'0  V0 I() M {h E V inf X  h(x) 0}

. has certain advantages, especially in the statement of

" continuity results. Moreover, V is the natural counterpart
0

of BM+ (X) since

(1.4) - log h(.) E BM+ (X) iff h(.) E V0

It thus follows from the statement concerning Laplace functionals

-i that the distribution of a point process is determined by
{G[h] h G V }

2. The extended p.g.fl. and continuity properties

Neither V0 nor V is closed under pointwise convergence.

*" Such closure is a property of the richer class of functions

V - {measurable h : X - [0,11.

Moreover, given any h G 17 , there exists a sequence of functions

{h C V0  such that

(2.1) h (x) . h(x) (n - c)n

because, for any monotone increasing sequence of bounded sets

A with limit X , the relationn

-1
h (x) = 1 - IA (x) (1 -n ) (1 -h(x)) (n = 1,2,...)

n

yields such a sequence.

We shall also have use for

7 {h V : inf h(x) 0}
0 X X
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Now, given any h G ' , the integral

r
log h(x) N(dx)

ix

is uniquely defined as a countable sum of non-positive

number, whether the resulting quantity is finite or infinite.

Lt h n - C V0  satisfy (2.1) . Then the integrals

(2.2) log hn x) N(dx)

are finite a.s., and the monotonicity of h enables us ton

apply the Lebesgue monotone convergence theorem to conclude

that as n-

rr
(2.3) log h (x) N(dx) - [ log h(x) N(dx) a.s.,

whether the limit is finite or infinite. Since the exponential

of each term in (2.3) is bounded by unity, an appeal to

the dominated convergence theorem shows that

(2.4) G[h n E(exp I log h (x)N(dx))
)X n

E(exp { log h(xO N(dx)) - [h]fx

where the right-hand side is taken as the definition of

the extended p.g.fl. G[h] over h E .

(It is a simple exercise to verify that, if {hn} CVO is

any other sequence that converges monotonically to h

pointwise as at (2.1), then G[h'] - G[h] as at (2.4), i.e.,n

G[h] is well-defined via the construction involving sequences

h .)

The same argument can be applied to G[.] itself

whenever nh C "V satisfies (2.1), and so leads to part (ii)
.... .... ..- :-- . .:.- - ,- ,-. -.- :-> ..-.- < .- <','?< ,'.?,_/ .?.'?, '¢ 4.. .' <'.'., . ,- -n:'< .!
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of the following compendium of continuity results concerninq

THEOREM 2.1 Let N be any given point process and {h ,
n

a pointwise convergent seauence of functions h E UV with~n

limit h . The extended p.g.fl. G of N satisfies

(2.5) G[h n - Glh] as n.'. n

'* whenever one of the following holds:

(i) N(X) < a.s.

(ii) hn (x) 4 h(x) (all x

- (iii) h (x) t h(x) (all x) and {h } C V
n n

(iv) Ilog(h (x)/h(x)) < E(x) (all n) where the function
n

:-E (.) is measurable and satisfies

(2.6) c(x)N(dx) a.s.

(v) For all sufficiently large n , hn (x) h0 (x)

(all x) for some h0 C ]70 , and h n(x) -h(x)<clx) (all x)

for some measurable function E(.) satisfying (2.6).

Remark. This compendium could be extended, as in Westcott's

(1972) Theorem 2, by including conditions involving the first

moment measure M(.) = E N(.) , assuming the existence of

M(.) (i.e., finiteness of M(A) for bounded A E B

Proof. When condition (i) holds, there exists, except possibly
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N a r-null set, a finite set of points x (1), ... ,xN(X) (Go)

such that

r N (t) N (a,)
exu logh (x)N(dx) n h n(xi()) - T h(xi(U))

n i=l i=l

by the pointwise convergence of h , i.e., (2.3) holds.n

Then by dominated convergence, much as at (2.4), we must

have (2.5)

We have already indicated the proof that (ii) implies

(2.5) When (iii) holds, it follows that the integrals

at (2.3) are finite and the convergence is monotone, so,

aaain, (2.4) holds. (Indeed, under conditions (iii)

h "L V also; if also hn E V0 , then h E V0  also.)

Introduce h'(x) = min(h (X),h(x)), h"(x) = max(h h(y)),n n n n

so that when (iv) holds, 0 < log(h"(x)/h'(x)) < cAx) ,n n -

and therefore, by dominated convergence,

(2.7) 0 _ log(h"(x)/h'(x)) N(dx) -0 a.s. (n co)
)X n n

Consequently we then have

T hn -G[h] = E(expf loghn (x)N(dx) -exp logh(x)N(dx))J

< E"(exp! log h" (x)N (dx))
lix n

(1-exp( log [h'(x) /h"(x)]N(dx))l
nX n

S E{exp [-log(hn(x)/hn(x))]N(dx)} - 0 (n- )

by dominated convergence with respect to expectation (i.e.,

the P-integration) using the pointwise convergence result

at (2.7).

- -" ' , "% , "" ''' ,. " % " , . *° . . . . I . o . ... • . . . . ..
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When (v) holds, suppose without essential loss of

generality that for all n , h (X > h 0(x) (all x ).

- Then inf h(x) * inf h0 (x) E y say with y 0.'. .x IE X n X E X

and thus, with hn , h" as in the proof with (iv) holding,
n -n

Ilog(h (x)/h(x))l = log[l - (1 -h' (x)/h"(X) )]
nn n

(l h'l(x) /h"nlx)) Z 11 y) j

- n n j=0

~-l

= y (1 -h'(x) /h" (X)
n

-2 2ix

< y 2h(x)-h(x) < 2x).
n

we can now mimic the proof as for part (iv).
' - N

The continuity at s = 1-0 of a p.g.f. 0(s) E s

for an a.s. finite non-negative integer-valued r.v. N

implies the continuity for all 0 < s < 1 because, with

0 < s1  1 , OsIs)/qis) is again a p.g.f. The analogous

* . statement for point processes requires some care in formulating

the necessary qualifications.

THEOREM 2.2. Let {h n C 'V be a pointwise convergent

sequence with limh hn(x) = 1 for every x G X Then

for a point process N with extended p.g.fl. G[.]

(2.8) G[h n 1 1 as n a

if and only if for every h E "

(2.9) G[hnhi -* G[hh as n-*.

n

Proof. In one direction the theorem is trivial,



because (2.9) reduces to (2.8) with h(x) 1 .For

tlhe converse, we have merely to observe that

Gfh] = EX, Gdih nh] = EXY n, G[h n EYn

f 7ocrtain [0,11-valued r.v.s X, Y n' and thus

Q <c G[h] -G [hh nI = E(X (1-Y n)) < E(1-Y n = -E[h n]

showing that (2.8) implies (2.9).

Another p.g.fl. analogue of the continuity property of

p.q.f.s is the following result.

THEOREM 2.3 For h E VT 1 a[-c(1-h)] 1~ a s a 0

if and only if (1-h(x))N(dx) < a.s.

Proof. For fixed a in (0,1), since 0 < 1-h (x)< I

-,tl-h ' log(1-cxll-h))> all-h) (a(l-hflk
k=0

''hu s, E exp(- i(1~-h(x))N(dx)) > G [l-a(1-h)]

E exp(- al-) (1-h(x))N(dx))

Py elementary properties of Laplace-Stieltjes transforms

of [0,-I-valued r.v.s, it follows that the first and last

t(!rms in these inequality relations converge as ax 4 0 to

Pr, (1-h(x))N(dx)
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3. Mixing of point processes

Stationarity of a point process N on X = is the

Srequirement that the joint distributions of T N(.) N(.-fx)
x

- be independent of x , or, by extension, that P(T U)= P(IU)
x

' for all x C IRd  and U E F . A stationary point process

. N(.) is said to be mixing when for any U, V e F

P(U nl T V) P(U)P(V) as 1x -

Westcott (1972) showed in the case d = 1 , and his proof

carries over unchanged to the case of general finite integer

*d , that N(.) is mixing iff its p.g.fl. G[.] satisfies,

for all hl,h2 e V

(3.1) G[h 1 Txh 2] G[h 1 SIG[h 21 as 11 x-l

where for any function h. IR d -' IR , T h(u) h(u+x)
x

' Recalling that P(.) is determined uniquely by {G[h]: h C V0

we have the following seemingly trivial modification of

Westcott's result.

THEOREM 3.1. A stationary point process N(.) on

is mixing iff its p.g.fl. satisfies (3.1) for all

hlth 2 E V0
2 V0

We shall also be interested in the extended p.g.fl. version

of (3.1); this extension is not quite as trivial and is as

follows.

PROPOSITION 3.2. When a stationary point process is mixing,

*O its extended p.g.fl. [. satisfies

(3.2) G~h T h I-* I~ as -

1 x 2 G[hl]G[h 2] Ii x1j

for all h ,h 2
* "'

* . . o . • . . . . * . *. . * ** ° - • • . . + o . •, • . •-. - . . "% .



* Proof. Start by showing that (3.2) holds for h1 E V,

by using a monotone sequence of funct.,s {h 2n} C V0 with

h 2 (X) h 2 (x) as n- . Then

(3.3) G[h1 T xh = G[h1Txh2n]

- G[hlG[h 2 ] = G[hl]G[h 2 n]

as K xV -
" , and write

0 !Gfhl]Gh 2 ] -IG[hTxh2

_ G[h 1 j (G[h 2 ] - G(h 2n ) + IG[hlG[h 2 nI - G[h 1 T xh 2 n

+ IG[hlTh 2 ] - G[hlTxh 2 ]

- + (x) + 63n(X) say.
'in 2n 3n

3nlX) = 1E exp loghl(y)N(dy)[exp log Txh 2 n(y)N(dy)

- expf log Txh 2 (y)N(dy)IfX2

!GT[Txh2n - (Txh 2 ] by monotonicity

- G[h 2n] - G[h 2 ] by stationarity

Clearly, dn - !G[h 2 n] -G[h 2 ] , so given F > 0 , we

can make both cin : c and 6 3 n() < , uniformly in x , by

choosing n sufficiently large. Fixing such n, (3.3) implies

that for 1K xli sufficiently large, 6 2n(x) < also. Thus

(3.2 hod fo V 0  h2  V A similar argument22* (3.2) holds for h I ' , E .Asmlragmn

• . .-.. > - .-.- ,,..:...'.:--.- .-. :,, - - '- '-. .-. >,, -. ,. , > ¢ ;,- o V0 - , ".
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S.proves it for h E as well.

4. Mixing of cluster processes

The cluster processes we consider have the structure

(4.1) N(.) = N 1 Ix i )
x.E N

c

where N is the cluster centre process and the cluster~c

-. member processes Nml. are finite point processes coming

•- from an independent family in the sense that for any countable

collection of subscripting indices, Nm( . jxi ) are mutually
0M

independent a.s. finite point processes which are dependent

on N only through the locations x. of the cluster centres.
c 1

If it is also assumed that

(4.2) Nm ( Ixi) =d Nm(.-xilO)

and that Nc(.) is stationary, then it follows that the

cluster process N(.) is stationary. While there do exist

stationary cluster processes for which Nc(.) is non-stationary
c

and Nm(-f-) does not have the homogeneity property at (4.2),

the conditions enunciated around (4.2) do constitute a natural

prescription for what we shall always understand by the term

stationary cluster process. Writing

. (4.3) Gm[hlx] = E exp logh(y)Nm(dylx)

" it is known (see e.g. Westcott (1971) for references and details)

that the p.g.fl. G[.] of N(.) is related to Gm[.I

and the p.g.fl. Gel.] of Nc(.) by
c c
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(4.4) G[h] = G c[G m[h]]

E expl (logGm[h x] [N (dx)SX mc

and that

(4.5) (1 -G [hlx])N (dx) < a.s.,

"X m c

where h C V . It is to be remarked that for such h

and N (.;x) , it is certainly the case that G [hlx]
m m

need not be an element of V To that extent therefore,

the right-hand side of (4.4) should be written in terms of

the extended p.g.fl. Gc[.] . In other words, now that an

extended p.g.fl. is defined, we can replace the loosely

written statement (4.4) by

(4.4)' G[h] = c[Gm [hi.]] (h E V)

with (4.5) satisfied.

For a stationary cluster process the relation (4.2)

has as its p.g.fl. version

(4.6) Gm[hx] =G m[Txh0]

which, since the left-hand side equals TxGm hIO]

can be written as

(4.6)' T G [hlu] = G [hlu+x] = G [Txhul
x in m m

LEMMA 4.1. When the family {N m(.) :x E X} satisfies (4.2),

the p.g.fl. Gm h~x] E "V0 when h G V0 , and Gm[hlx] -

as U xfl

,, -,.-..-,.'....." ." "...".-.- , ," " -.-" . , ---' ' , .- "".,-" -.,.- " .".., , ."'; ." , '_ -"- ," -. -" t.""". ...."''v .'- " . ".".'. ". " " .."
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Proof. Let h e V have inf h(x) e - 0
0 XEC X

for some non-negative finite e . Then, using (4.6),

G [hx] = E exp log h(y+x) N (dyI0). fX m

N E exp(-eN (XI1)) > 0
- m

. because Nm (X10 ) < a.s.

For h E V T h - 1 pointwise as I] -j so the0.' x

convergence to 1 of Gm[hjx] = GmITxhI0] follows from

N (XIO) < and part (i) of Theorem 2.1.

The theorem below is in Westcott (1971), though with

an incomplete proof. We were led to consider extended p.g.fl.s

and the classes V I , and 17 through formulating a p.g.fl.

proof of the result. An alternative proof is at 11.1.4 of

." Matthes, Kerstan and Mecke (1978).

THEOREM 4.2. If the cluster centre process of a stationary

cluster process as above is mixing, then so is the cluster

-process.

O Proof. In view of Theorem 3.1, Proposition 3.2, and (4.4)',

* it is enough to show that for all h1lh 2 E V0

(4.7) G[hlTxh2I = [Gm[hlTxh2 .]]

_ [ Gc[Gm[hlI.]]Uc[Sm[h21]
c m lcm21]

as I xfj l , it being known that the extended p.g.fl.

G[.] defined by Gc[.] satisfies (3.2) and that

G [hix] E "V C V for h E V . Thus, for hl,h 2 E V0
In 0 02 0

...........*..., S. . . . . - ..
. . ... . . . %.% .%. .. .. *.*p~.I ~
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(4.8) Tc[G[h ]Tx Gm[h 2 1.]] Gc[Gm[hl. ]G[G(h 2 I.

= G[h 1 ]G[h 2 ]

so, writing x (u) = Gm [h1 U]TxGm [h2 Jul

L (u) = Gm[h 1 Txh2
1u] - x (u)

it follows from (4.7) and (4.8) that it is enough to show

that as X-

(4.9) c[ X x + Ax I - G[X xI 0.

Appealing to the boundedness property noted in Lemma 4.1,

infx X,u E X .x (u) = ), say with Y > 0 , and

infx xu E x(Lx(u)+Xx(u)) >0 , so, as a little manipulation

shows,

G x+ x I - Gc[x I < 1 -E exp{- I log(l+!Ax(U)IXx(U))Nc(du)}

The function A (u) is of the form cov(X,Y) for r.v.sx

X,Y with the property 0 < X < 1 , 0 < Y < 1 , EX = G m[hlJul

EY = G m[Tx h 2u - 1 as fl xjj - • For such r.v.s,

cov(X,Y) I < 1 - max(EX,EY), so A (u) - 0 pointwise as
* x

H xlj- , and the relation JA (u) < 1-G [hlJul shows it
- ml

to be a.s. N -integrable uniformly in x . Now, using thec

positive bound y on Xx(u) and IAx(U)K i

o ~~~P * •..-- -- o- .. _ _% _ . . . . . . . . .. . - , - - -4 . .
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-log(1 +A II/x )I = log( - IL I/(A I + X W)

-1 -k 21l z (1+Y) (1i+-Y)A
Xk=O

Thus we may apply part (iv) of Theorem 3.1 with

E:(U) = y (1+y) (1l- G[h1 Iu]) and JA X(u)I/x x(u) -~0 pointwis

as II xf -~ to conclude that, as 11 xfl j

0 (4.9) is established, and the theorem is proved.
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